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The viscous linear stability of four classes of incompressible flows inside rectangular
containers is studied numerically. In the first class the instability of flow through
a rectangular duct, driven by a constant pressure gradient along the axis of the
duct (essentially a two-dimensional counterpart to plane Poiseuille flow – PPF), is
addressed. The other classes of flow examined are generated by tangential motion of
one wall, in one case in the axial direction of the duct, in another perpendicular to
this direction, corresponding respectively to the two-dimensional counterpart to plane
Couette flow (PCF) and the classic lid-driven cavity (LDC) flow, and in the fourth case
a combination of both the previous tangential wall motions. The partial-derivative
eigenvalue problem which in each case governs the temporal development of global
three-dimensional small-amplitude disturbances is solved numerically. The results
of Tatsumi & Yoshimura (1990) for pressure-gradient-driven flow in a rectangular
duct have been confirmed; the relationship between the eigenvalue spectrum of PPF
and that of the rectangular duct has been investigated. Despite extensive numerical
experimentation no unstable modes have been found in the wall-bounded Couette
flow, this configuration found here to be more stable than its one-dimensional limit. In
the square LDC flow results obtained are in line with the predictions of Ding &
Kawahara (1998b), Theofilis (2000) and Albensoeder et al. (2001b) as far as one
travelling unstable mode is concerned. However, in line with the predictions of the
latter two works and contrary to all previously published results it is found that
this mode is the third in significance from an instability analysis point of view. In a
parameter range unexplored by Ding & Kawahara (1998b) and all prior investigations
two additional eigenmodes exist, which are both more unstable than the mode
that these authors discovered. The first of the new modes is stationary (and would
consequently be impossible to detect using power-series analysis of experimental data),
whilst the second is travelling, and has a critical Reynolds number and frequency
well inside the experimentally observed bracket. The effect of variable aspect ratio
A ∈ [0.5, 4] of the cavity on the most unstable eigenmodes is also considered, and
it is found that an increase in aspect ratio results in general destabilization of the
flow. Finally, a combination of wall-bounded Couette and LDC flow, generated in
a square duct by lid motion at an angle φ ∈ (0, π/2) with the homogeneous duct
direction, is shown to be linearly unstable above a Reynolds number Re = 800 (based
on the lid velocity and the duct length/height) at all φ parameter values examined.
The excellent agreement with experiment in LDC flow and the alleviation of the
erroneous prediction of stability of wall-bounded Couette flow is thus attributed to
the presence of in-plane basic flow velocity components.
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1. Introduction
Linear stability theory is concerned with the evolution of small-amplitude disturb-

ances superimposed upon a basic state. In the case of steady basic flows, separability
of time from the three spatial coordinates in the disturbance equations suggests that an
eigenmode Ansatz may be introduced to describe the time-evolution of disturbances,
their amplitude functions being dependent on the three spatial coordinates in general.
However, numerical solution of the fully three-dimensional (global) linear eigenvalue
problems is still impractical using currently available hardware and algorithms
for all but the smallest Reynolds number values (e.g. E. Leriche 2003, personal
communication).

In order to perform a temporal linear stability analysis of flows varying in more than
one dimension a number of simplifications have been employed in the past, often in a
heuristic fashion, the most radical of which considers a basic state to depend on one
spatial coordinate alone, the other two spatial directions being taken as homogeneous,
thereby permitting the use of normal-mode analysis in the latter two directions. This
simplified approach has been widely employed in the last century to study (for
example) the instability of boundary layers where the basic flow velocity component
in the wall-normal direction is usually neglected, together with boundary-layer growth
effects, assumptions commonly known as the parallel-flow approximation.

The predictions of classical linear stability theory have met with mixed success.
The most notable verification of the theory was the experimental identification by
Schubauer & Skramstad (1947) of the instability waves on a flat-plate boundary layer
postulated by Tollmien (1929); the most notable failure of the theory is its prediction
of stability of Hagen–Poiseuille flow (HPF) in a pipe at all Reynolds numbers,
although instability and transition to turbulence in this flow is known at least since
the celebrated experiments of Reynolds (1883); the case of (one-dimensional) plane
Couette flow (PCF) is another glaring anomaly. These discrepancies are all the more
alarming, given that the basic flows in these two latter states are both truly parallel.

Between the two extremes of basic flows dependent upon one coordinate direction
and flows dependent upon all three coordinates, one may consider steady or
time-periodic basic flows dependent upon two spatial directions and impose three-
dimensional disturbances periodic in the third, homogeneous, spatial direction. The
non-parallel (global) linear instability analysis that forms the basis of the present
paper constitutes the natural extension of the classic linear stability theory eigenvalue
problem (Tollmien 1929) in that, in place of the system of the ordinary-differential
Orr–Sommerfeld and Squire equations which result from the one-dimensional basic
flow assumption, a system of partial differential equations is considered. The link
with classical analyses may (in some cases) be achieved in a self-consistent manner as
a limiting case of solutions to the partial-derivative eigenvalue problem, as shown in
this paper and in the recent review of Theofilis (2003), where an extensive discussion
of the present analysis methodology, also known as BiGlobal linear theory (Theofilis
et al. 2003; Jacquin et al. 2003; Seifert et al. 2004), may be found.

Results obtained using global instability analysis are slowly emerging in many areas
of fluid mechanics, following the pace of hardware and algorithmic developments.
The first studies of the partial derivative eigenvalue problem arising in fluid dynamics
focused on the inviscid limit of certain problems, notably by Pierrehumbert (1986),
who reported the discovery of short-wavelength instability in inviscid vortex flow.
Henningson (1987) studied the stability of inviscid shear flows with mean flow
spanwise variation while Hall & Horseman (1991) addressed the secondary instability
of Görtler vortices, potentially appearing in regions of surface or streamline curvature
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on aircraft components. All three studies involved the solution of what may be
regarded as the two-dimensional analogue of the Rayleigh problem, since the analysis
was based upon inviscid disturbance equations. Recently Otto & Denier (1999) have
presented an efficient method for solution of these types of equations.

Early work which has included the effect of viscosity in the global stability analysis
is that of Lee, Schultz & Boyd (1989) who addressed low-Rayleigh-number heat
transfer in a rectangular container and Tatsumi & Yoshimura (1990) who were
the first to solve the generalized Orr–Sommerfeld and Squire system for the flow
driven by a constant pressure gradient inside a rectangular duct. Morzynski & Thiele
(1991) and Barkley & Henderson (1996) addressed the instability of laminar flow
behind a circular cylinder, while Barkley, Gomes & Henderson (2002) solved the
linear instability of laminar flow at the backward facing step. Lin & Malik (1996)
applied global linear instability theory to study the swept (Hiemenz) attachment-
line boundary-layer flow, a problem also solved by Theofilis et al. (2003), who
demonstrated that the three-dimensional global linear eigenmodes of this flow may
be modelled and recovered as solutions of a sequence of one-dimensional eigenvalue
problems of the Orr–Sommerfeld class. Ehrenstein (1996) solved the global eigenvalue
problem in a channel one wall of which was modelling a riblet geometry and showed
that the primary instability of this channel flow was enhanced when compared
with the classic plane Poiseuille flow (PPF). Wintergerste & Kleiser (2000) studied
the stability of nonlinearly generated crossflow vortices during the late transitional
stages of boundary-layer flow, while Härtel & Meiburg (1999) have applied global
linear theory to explain their observations in direct numerical simulations (DNS) of
avalanches.

In this paper we are concerned with flows inside rectangular containers. The first
class of flow considered is that in a rectangular duct of cross-sectional aspect ratio
A, driven by a constant pressure gradient along the axial (unbounded) direction;
the large-aspect-ratio (A→∞) limit of this configuration is PPF. The second class
of flow considered is wall-bounded Couette flow in a rectangular enclosure, one
wall of which is sliding in the axial direction of the duct, and so the limit of large
aspect ratio relates this basic flow with the classic (one-dimensional) PCF profile.
If on the other hand the direction of motion of the sliding wall is perpendicular
to the axial direction of the rectangular domain, a lid-driven cavity (LDC) flow is
obtained; in the latter two flows the pressure gradient along the unbounded duct
direction is taken to be zero. Finally, the two extremes of wall-bounded Couette
and lid-driven cavity flows may be reconciled by considering a lid motion along
a direction between the respective extreme values. In general there is no rational
approximation which reduces the instability problem in any of these four flows to a
set of ordinary-differential equations.

The stability of pressure-gradient-driven flow through a rectangular duct has
attracted much interest in recent times. Kao & Park (1970) performed controlled
transition experiments in an A= 8 flow and concluded that the flow is unstable above
a critical Reynolds number Recrit≈ 2600 and wavenumber βcrit≈ 1.5. These authors
also applied classical linear theory, based on the solution of the Orr–Sommerfeld
equation, in an effort to relate the measured disturbance amplitude functions to the
eigenfunctions of PPF. They obtained fair agreement as far as the eigenfunctions were
concerned but not with respect to the critical parameter values. Tatsumi & Yoshimura
(1990) in their influential work addressed the problem of viscous linear instability of
the rectangular duct flow by applying the appropriate partial derivative eigenvalue
problem analysis. They concluded that the lateral wall has a stabilizing effect on PPF,
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and showed that a decrease of the aspect ratio leads to an increase of the critical
Reynolds number from the overprediction Recrit,PPF = 5772.22 that linear theory yields
in the limit A→∞ (Orszag 1971); they postulated that Recrit→∞ at A= 1, thus adding
another paradox (within an eigenvalue-problem stability analysis) of linear stability of
flow in the square duct alongside that of HPF in a pipe. Tatsumi & Yoshimura (1990)
went on to attribute the discrepancy between their instability results and experiment
to an unquantified nonlinear instability mechanism. As a matter of fact, subcritical
instability is known to be responsible for transition to turbulence in the related
problem of PPF, as Herbert (1974, 1977) has demonstrated. DNS work (Kleiser 1982;
Orszag & Patera 1983; Zang & Hussaini 1995) has elaborated on this mechanism and
shed additional light on the specific nonlinear mode interactions. These theoretical
results have been supported by the careful experiments of Nishioka, Iida & Ichikawa
(1975) and Nishioka & Asai (1985). An analogous theory for subcritical instability of
rectangular duct flow does not exist at present.

Kerswell & Davey (1996) discussed the linear instability of flow in a pipe with
elliptical cross-section. They found that the constant-pressure-gradient-driven flow
in a relatively small-aspect-ratio geometry, A � 5, is linearly stable and were able
to identify the instability of the spanwise modulated analogue of the most unstable
PPF eigenmode above A≈ 10.5. Their large-aspect-ratio results were in line with
the predictions of Hocking (1977, 1978) who proposed that the spanwise boundary
curvature introduced by the sidewalls in a rectangular duct has a stabilizing effect
on the flow, when compared with its infinite-aspect-ratio PPF counterpart, and put
forward the relationship

Recrit = Recrit,PPF +
6844

A2

to relate the critical Reynolds number in a duct of aspect ratio A to that of
PPF. Though qualitatively correct, the quantitative comparison with the subsequent
numerical results of Tatsumi & Yoshimura (1990) did not confirm the above
asymptotic relationship, pointing to the need for numerical approaches to provide
accurate predictions. For small-aspect-ratio elliptic pipe and rectangular duct flows,
as well as their idealized analogues, HPF and PPF, this discussion is largely academic
since linear theory has failed to match experimental observation. Using experiment
and computation, Tumin (2000) has recently discussed the onset of turbulence in
circular pipe flow from a nonlinear instability point of view, and singled out the
occurrence of hairpin vortices as a universal characteristic of pipe flow transition,
which may encompass both secondary instability (Herbert 1977) and transient growth
scenarios (Trefethen et al. 1993; Schmid & Henningson 2001).

No work is known with respect to the stability of Couette flow in the presence
of lateral walls. It is worth emphasizing that the simplicity of the basic flow in the
one-dimensional case has prompted intense investigation of the linear instability
of PCF, but has led to what until recently was considered a paradox, namely
linear stability theory failing to locate any unstable modes, first in a multitude of
numerical approaches and secondly in the analytical work of Romanov (1973). Long
ago Rayleigh (1914) attributed transition to turbulence in PCF to finite-amplitude
disturbances. Nonlinearity and non-normality of the linear operator in shear flows are
the central themes in the experimental works of Daviaud, Hegseth & Bergé (1992),
Tillmark & Alfredsson (1992) and Bottin et al. (1998), the combined theoretical
and numerical work of Eckhardt, Marzinzik & Schmiegel (1998), Faisst & Eckhardt
(2000) as well as the theoretical works of Waleffe (1995), Boberg & Brosa (1988) and
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Trefethen et al. (1993). Nonlinear analysis in the works of Nagata (1990) and Clever &
Busse (1997) delivered the first three-dimensional structures in PCF. Discussion of
both issues is beyond the scope of the present paper, where we focus instead on
studying the effect of lateral walls on the stability of PCF.

The problem of calculating the steady flow inside a square cavity, driven by the
sliding of the cavity lid, has interested fluid dynamicists and numerical analysts alike
for over 30 years. The intricacies of the basic-flow problem were found originally by
Burggraf (1966); the flow is rich in fluid mechanics, even at modest Reynolds numbers,
comprising a core vortex and vortices located in the corners of the container, created
as a result of flow separations. Indeed local analysis, based on that of Moffatt
(1964) indicates that infinite solution resolution would lead to an infinite number
of progressively weaker counter-rotating eddies in these lower-corner regions. The
singular solution behaviour at the top corners of the container further complicates the
flow and numerical analysis – the simplicity of the geometry is not matched by the flow
solution per se. At Reynolds numbers above just a few hundred (the régime studied by
Burggraf 1966), more sophisticated numerical analysis and computational procedures
are required, and it is this that has led to this problem becoming a benchmark for
workers in the field of the numerical solution of elliptic partial-differential equations.
Early numerical solutions focused on the steady equations of motion and accuracy
was limited by the then available hardware capabilities. Unsteady approaches to
the problem yield a yet further twist to the overall picture. The work of Goodrich,
Gustafson & Halasi (1990) and Shen (1991) indicates that the flow converges to a
(two-dimensional) steady state for Reynolds numbers up to about 104. The former
work suggests that for Reynolds numbers in the range 10 000 < Re < 10 500 the flow
becomes temporally periodic with a Hopf bifurcation, whilst Shen (1991) shows the
flow to become quasi-periodic in the range 15 000 <Re < 15 500 in the regularized
case, with a non-uniform sliding of the lid (in order to avoid difficulties with flow
singularities at the top corners of the cavity).

Pan & Acrivos (1967) conducted a series of experiments with relatively deep (i.e.
small-aspect-ratio) cavities, and obtained some quite encouraging agreement with the
numerical results of Burggraf (1966). These experiments were conducted in the range
20 < Re < 4000 and indicated that an increase in the (cavity-width-based) Reynolds
number causes the centre of the core vortex to move to the centre of the cavity,
and the size of the so-called downstream eddy (that is the eddy at the lower right-
hand-side corner, assuming the lid to move from left to right) increases in size up
to a Reynolds number of 500, and thereafter diminishes in scale. Koseff & Street
(1984) and Freitas et al. (1985) conducted visualization studies on flows inside square
cavities of spanwise aspect ratio 3:1, in the range 1000 <Re < 10 000. Up to Re = 3200
the flow was observed to be two-dimensional, but beyond this value the flow became
discernibly three-dimensional, with the formation of counter-rotating (Taylor–Görtler-
like) vortices near the downstream eddy with an axis parallel to that of the moving lid.
In the flow regime Re > 5000 it was observed that the flow became turbulent. Aidun,
Triantafillopoulos & Benson (1991) refined the observations of previous investigations
by conducting experiments on the flow inside a lid-driven cavity (with depth- and
span-to-width aspect ratios of 1:1 and 3:1 respectively), and concluded that for
Reynolds numbers below 500 the flow was two-dimensional, between 825 <Re < 925
the flow underwent a transition to a three-dimensional, small-amplitude, time-periodic
state. For 1000 < Re < 1300 travelling waves were seen to appear, with a much more
complicated flow structure. For Reynolds numbers in excess of 1900 irregularly spaced
mushroom-like structures were observed. These authors also observed the existence
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of multiple steady states†. Later, Benson & Aidun (1992) by using a power-spectral
analysis of their experimental results, estimated the dimensionless neutral frequency
for instability to be 0.1112.

Three-dimensional DNS of the problem has been undertaken by Kim & Moin
(1985) who employed periodic boundary conditions in the spanwise direction and
indicated the occurrence of two pairs of Taylor–Görtler vortices when Re > 900
(although just one spanwise wavenumber was considered, and it is unclear if the
vortices were steady). Ku, Hirsh & Taylor (1987) also performed a three-dimensional
simulation, but within a cubic cavity (with no slip replacing periodicity in the spanwise
direction), and found the effect of the endwalls was to suppress the Taylor–Görtler
vortices. More recent work using different strategies for the numerical integration
of the incompressible Navier–Stokes and continuity equations in a cubic cavity (e.g.
Guj & Stella 1993; Tang, Cheng & Tsang 1995) has produced results which are
essentially in agreement with those of Ku, Hirsh & Taylor (1987) at Re = 1000 as far
as the streamwise and normal velocity profiles along the centre axes on the spanwise
midplane are concerned. However, while Tang et al. (1995) have demonstrated
evidence of Taylor–Görtler vortices, Guj & Stella (1993) have failed to report them.

When seeking an explanation of these apparently contradictory results of two- and
three-dimensional cavities one may attempt to use global linear instability analysis
to investigate whether the different phenomena observed might be attributed to the
different growth/damping rates of disturbances pertaining to different wavenumbers
of three-dimensional global eigenmodes. Calculations of this type are extremely
challenging; the difficulties in computing the basic state have already been alluded to,
and it is well known that instability analyses are extremely sensitive to the accuracy
of the prescribed basic state (which is two-dimensional). We are led, therefore, to
consider the solution of partial-eigenvalue problems, which are very demanding in
computational resources; again, recent developments in algorithms and computational
hardware have enabled significant progress to be made in this area.

The first attempt at studying the stability of lid-driven cavity flows appears to be
that by Poliashenko & Aidun (1995) who analysed the stability of the flow to two-
dimensional global modes (i.e. those pertaining to zero spanwise wavenumber) and
found a subcritical Hopf bifurcation at a Reynolds number of about 7000 for cavity
aspect ratios around unity. However the aforementioned experimental observations
all point to the fact that it is three-dimensional disturbances which are the first
to become unstable (clearly, in this context, the use of Squires’ theorem is entirely
inappropriate). Ramanan & Homsy (1994) used a high-order finite-difference scheme
on the problem, and determined a loss of stability in the square cavity case at a critical
Reynolds number of 594, the instability mechanism being of zero frequency, with non-
dimensional wavenumber (in the third/spanwise direction) of β = 2.12. Three papers
by Ding & Kawahara (1998a ,b, 1999) considered the problem using a finite-element
methodology. In the first paper the authors indicated the existence of Taylor–Görtler-
like vortices in the cavity; in this case a critical Reynolds number of 1025 was
predicted, together with critical non-dimensional spanwise wavenumber and frequency
values of (βcrit, fcrit)≈ (7.6, 0.080). The second paper by the same authors predicted a
critical Reynolds number of 925, together with critical parameters (7.4, 0.079), while
the third paper refined the critical Reynolds number estimate to Re≈ 920.3 and

† The existence of multiple steady states in the related problem of flow in a cavity driven by two
opposite walls moving along the same or in the opposite direction has recently been documented
by Albensoeder, Kuhlmann & Rath (2001a)
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confirmed the critical wavenumber and frequencies of Ding & Kawahara (1998b).
The assertion was also put forward by these authors that the instability observed is an
absolute instability in the sense of Huerre & Monkewitz (1990). It might be argued that
this classification is confusing since in lid-driven cavity flow, where flow develops inside
a closed container, the concept of upstream propagation of a localized disturbance
is not appropriate since the flow is not unidirectional. In any event, one might
consider the agreement between the frequencies of the least-stable mode calculated
theoretically in the works of Ding & Kawahara (1998a, b, 1999) and that observed
experimentally (Benson & Aidun 1992) as fair. However, the discrepancy between
this frequency and that calculated by Ramanan & Homsy (1994), as well as the
discrepancy in the critical Reynolds numbers presented in the previous investigations
is unsatisfactorily wide. Aside from the inconsistency in the results of previous work,
open questions also leave some concern regarding the large discrepancies with the
numerical results in the DNS of Kim & Moin (1985), who present in their figure 7
the most unstable wavenumber β =2π/Lz≈ 2π/0.533 = 11.79. We note that all four
instability analyses discussed agree on the existence of unstable modes in the region
β ∈ [0, 10] but no information is available for higher wavenumbers. Theofilis (2000)
and Albensoeder, Kuhlmann & Rath (2001b) have revisited the problem of square
LDC instability, while the latter investigators have also reported critical conditions in
the case of rectangular cavity flows. Clearly, there is some variance in the previously
published data on the LDC problem, and one of the objectives of the present paper
is to produce rather more definitive results.

Finally, a combined wall-bounded-Couette/LCD flow is examined in an attempt to
reconcile the instability analysis results in the two extremes of moving-lid direction.
In this case an additional parameter is introduced in the problem, namely the angle
φ between the lid motion and the axial direction of the duct. Besides providing the
link between the PCF and LDC flows, the combined wall-bounded-Couette/LDC
flow serves as a model of three-dimensional flow in open cavities at high speeds,
where experimental and numerical work has related hypersonic flow in an open
cavity to incompressible LDC flow (Jackson, Hillier & Soltani 2001). Despite its
relative complexity, such a model offers substantial simplifications in instability
investigations of open cavities (Rowley, Colonius & Basu 2002) and represents the
first effort employing non-parallel global instability analysis techniques to a cavity
flow comprising a three-component velocity vector. Three representative values of
the angle φ, alongside Reynolds number values either side of the linear critical limits
pertaining to each eigenmode, and a full scan of the wavenumber space have been
considered in this fourth class of flows.

The outline of this paper is as follows. In § 2 details of the steady laminar two-
dimensional basic flows which are subsequently analysed are presented. In § 3 the
theoretical foundation of the global non-parallel linear instability analysis is discussed,
alongside algorithmic considerations regarding the challenging numerical solution of
the partial derivative eigenvalue problem. Stability results for all four classes of flow
are presented in § 4 and conclusions are drawn in § 5.

2. Two-dimensional basic flows
Consider a rectangular domain – a schematic representation is shown in figure 1.

If all walls are stationary a steady laminar flow may be set up inside the duct by
imposing a constant pressure gradient along the homogeneous (z) spatial direction.
On the other hand, in the absence of a pressure gradient, distinct steady laminar
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Figure 1. Rectangular duct flow configurations addressed.

flow patterns result from uniform motion of the top wall at a constant velocity in a
direction at an angle 0 � φ � π/2 with the x-axis. The two limiting cases, φ = π/2 and
φ = 0, give rise to a wall-bounded two-dimensional Couette (2DC) flow and lid-driven
cavity (LDC) flow (Burggraf 1966), respectively. The non-parallel linear instability
analysis of the steady laminar flows in the rectangular duct and the two latter flows is
the subject of the present investigations. The instability analysis of the steady laminar
flows resulting from 0 < φ < π/2 corresponds to the most general family of flows
comprising three velocity components and presents an order-of-magnitude greater
challenge in terms of computing requirements compared with the computing effort
necessary for the previous three classes of flows. Basic flows have been obtained in
this case for a square domain and a small number of parameters (Re, φ), sufficient to
elucidate the link between the 2DC and LCD flows.

2.1. Pressure-gradient-driven flow through a rectangular duct

Consider the rectangular duct defined in the domain Ω = {x ∈ [−A, A]}× {y ∈
[−1, 1]}, where A is the aspect ratio; all length scales here have been non-
dimensionalized with respect to the duct semi-depth. A constant pressure gradient
in the unbounded (z) direction drives a steady laminar flow which is independent of
z and possesses a velocity vector (0, 0, w̄)T with a single velocity component w̄(x, y)
along the z spatial direction, which satisfies the Poisson equation

∇2
2dw̄(x, y) =−∂p̄/∂z = c, (2.1)

where ∇2
2d = ∂2/∂x2 + ∂2/∂y2. The boundary conditions are

w̄(x, y =−1) = w̄(y, x =−A) = w̄(x, y = 1) = w̄(x = A, y) = 0. (2.2)

Taking c =−2 in (2.1) and scaling the result with the value of w̄ at the midpoint of
the integration domain, the Poisson problem may be solved in series form (Rosenhead
1963)

w̄(x, y) = 1− y2− 4

(
2

π

)3 ∞∑
n =0

(−1)n

(2n + 1)3
cosh[(2n + 1)πx/2] cos[(2n + 1)πy/2]

cosh[(2n + 1)πA/2]
. (2.3)

The plane Poiseuille basic flow result, w̄(y) = 1− y2, is retrieved from this expression
in the limit A→∞. However we chose to undertake a fully numerical solution for
the basic flow, using spectral collocation for the discretization and numerical solution
of (2.1)–(2.2) in the rectangular domain in question, with analytical mappings used
to transfer information from the latter on to the canonical Legendre Gauss–Lobatto
grids. An acceptable approximation to the analytical result (2.3) is obtained on just a
82 grid on which the centrepoint velocity differs from the analytical solution by less
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A = 1 A= 2

(Nx ×Ny) Qnd (Nx ×Ny) Qnd (Nx ×Ny) Qnd (Nx ×Ny) Qnd

8× 8 0.25031 8× 8 0.36458 16× 8 0.36497 16× 8 0.36414
16× 16 0.25003 16× 16 0.36475 32× 16 0.36482 16× 32 0.36470
24× 24 0.25001 24× 24 0.36478 48× 24 0.36480 24× 48 0.36477
32× 32 0.25000 32× 32 0.36479 64× 32 0.36479 32× 64 0.36478

analytical Qnd = 0.25 analytical Qnd = 0.36479

A= 3 A = 4

(Nx ×Ny) Qnd (Nx ×Ny) Qnd (Nx ×Ny) Qnd (Nx ×Ny) Qnd

8× 8 0.40886 24× 8 0.40969 16× 16 0.43199 64× 16 0.43217
16× 16 0.40945 48× 16 0.40957 24× 24 0.43212 80× 20 0.43216
24× 24 0.40953 72× 24 0.40956 32× 32 0.43214 96× 24 0.43216
32× 32 0.40955 96× 32 0.40955 36× 36 0.43215 112× 28 0.43215

analytical Qnd = 0.40956 analytical Qnd = 0.43216

Table 1. Non-dimensional volume flux of the numerically obtained basic flow solution in
wall-bounded Couette flow in domains of A = 1, 2, 3 and 4.

than 1 part in 108. This agreement is essential since, as already stated, the quality of
the basic flow conditions that of the eigenvalue problem results.

2.2. Two-dimensional Couette (2DC) flow

In this problem we consider, as before, the rectangular domain Ω and take the
basic flow again to have a single component and so the velocity vector can be
written (0, 0, w̄(x, y))T. In this case the flow is driven by a uniform lid motion along
the z-direction. The one velocity component satisfies (2.1) with c = 0, subject to the
boundary conditions

w̄(x = A, y) = w̄(x, y =−1) = w̄(x =−A, y) = 0, w̄(x, y = 1) = 1. (2.4)

It is straightforward to derive an analytical solution for w̄(x, y),

w̄(x, y) =

∞∑
n=0

4(−1)n

(2n + 1)π

sinh [(2n + 1)π(y + A)/2]

sinh [(2n + 1)πA]
cos [(2n + 1)πx/2] . (2.5)

Note the corner singularities in (2.5) which will result in a deterioration of the
exponential convergence of the spectral method for the numerical solution of (2.1)
subject to (2.4) but not its ability to converge as the resolution increases. In table 1
we monitor the numerical solution of (2.1) subject to (2.4) at four aspect ratios,
A= 1, 2, 3 and 4. We present results for the non-dimensional volume flux,

4AQnd =

∫ 1

y=−1

∫ A

x=−A

w̄(x, y) dx dy = 32
A2

π3

∞∑
n=0

[cosh(2n + 1)π/A− 1]

(2n + 1)3 sinh(2n + 1)π/A
, (2.6)

since this quantity provides an integral measure of the flow quality and delivers a much
better indication of the resolution requirements for the eigenvalue problem compared
with monitoring the convergence of isolated values of the basic flow velocity.

2.3. Lid-driven cavity (LDC) flow

The third class of flow we will be investigating is that in a two-dimensional rectangular
container filled with incompressible fluid and driven by a lid which moves with
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constant velocity perpendicular to the duct axis. As noted previously, the earliest
study of this basic flow was undertaken by Burggraf (1966). There is a review of
some of the early work on the problem by Tuann & Olson (1978); there are many
discrepancies between the different formulations in this era, no doubt due to the poor
resolution restricted by computational limitations at that time. Later work, aided
by the development of both computer hardware and numerical techniques, led to a
much more satisfactory state of affairs. Ghia, Ghia & Shin (1982) used a multigrid
approach to obtain solutions up to a Reynolds number of 104, the regime which was
also computed by Schreiber & Keller (1983) using a direct solution procedure, based
on Newton’s method. Other work includes that of Shay (1981), Thompson & Ferziger
(1989), Bruneau & Jouron (1990), Napolitano & Catalano (1991), Gupta (1991),
Nishida & Satofuka (1992) and Guj & Stella (1993). This list is not supposed to be
comprehensive, but merely indicative of the interest that this problem has aroused
over many years.

Here we take x to be in the direction of the motion of the lid and y to be along
the normal to this direction. The basic flow is considered independent of the third
(spanwise) direction z, an assumption which has been shown by Ku, Hirsh & Taylor
(1987) to lead to different results compared to a flow that develops in containers of
finite spanwise extent at all Reynolds numbers Re � 103. The steady basic flow vector
under these assumptions has two velocity components, (ū(x, y), v̄(x, y), 0)T, and only
numerical solutions to this steady laminar basic flow are known.

For the present two-dimensional problem it is advantageous from a numerical point
of view to consider the vorticity-transport equation

∂ζ

∂t
+

1

Re
∇2

2dζ −
{

∂ψ

∂y

∂ζ

∂x
− ∂ψ

∂x

∂ζ

∂y

}
= 0, (2.7)

with

∇2
2dψ + ζ = 0 (2.8)

relating the streamfunction ψ and vorticity ζ . The velocity components are obtained
through (ū, v̄) = (∂ψ/∂y,−∂ψ/∂x). The boundary conditions are v̄ = 0 on all four
walls x =0, x = A, y = 0 and y =1, ū= 0 on x =0, x = A and y = 0. The one
inhomogeneous condition is ū(x, y = 1) = 1. Note that the domain here (0 � x � A,
0 � y � 1) is slightly different from that used in the previous two configurations,
but this is deliberately chosen to conform with the nomenclature employed in
the past on these problems. The mismatch at the ends of the moving lid in this
case is expected to result in singularities analogous to those encountered in the
two-dimensional Couette flow discussed previously. Indeed, it is observed that the
presence of singular boundary conditions degrades convergence from spectral to
algebraic. A time-marching procedure was employed to generate the steady state; in
the light of the work of Goodrich et al. (1990) and Shen (1991), such a technique
is likely to be successful for Reynolds numbers below about 104, well beyond
our envelope of investigation. Algorithmic details for the computation of the two-
dimensional steady state may be found elsewhere (Theofilis 2003). Here we note that
in the streamfunction/vorticity-transport formulation all boundary conditions can be
imposed indirectly on the derivatives of the streamfunction, whilst no conditions are
imposed directly on the vorticity. Upon applying the semi-implicit scheme of Spalart,
Moser & Rogers (1991) for the time-integration of (2.7) a set of Poisson problems
for the streamfunction and vorticity must be solved. Direct inversion of the matrices,
though possible, is not efficient and we have implemented a matrix-diagonalization
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technique. If Nx and Ny points are used to resolve the x and y spatial directions,
respectively, a Poisson problem is solved by four matrix-vector multiplications and
one solution of a diagonal linear system. Two of the matrices involved in the matrix-
vector multiplications have a leading dimension Nx , that of the other two is Ny , and
(Nx +Ny) algebraic equations must be solved.

The advantage of the matrix-diagonalization technique compared with the direct
algorithm, in which the leading dimension of the matrix is Nx ×Ny , is decisive for
the performance of grid independence studies at different parameter values. Typically
upwards of 100 collocation points have been used to resolve each spatial direction.
Results for the basic flow in the Reynolds number range Re ∈ [102, 104] have been
obtained in the square lid-driven cavity and their comparison against benchmark
calculations is entirely acceptable, with our results for the location of the vortex cores
agreeing better with the Richardson-extrapolated data of Schreiber & Keller (1983)
than those of Ghia et al. (1982). Subsequently, the depth of the cavity was kept equal
to unity and steady laminar basic flows were obtained at aspect ratios A= 0.5, 1, 2, 3
and 4 in the neighbourhood of the tips of the neutral loops pertaining to each aspect
ratio value.

2.4. The ‘2DC–LDC’ flow

Finally, a fourth class of flows is identified by taking φ ∈ (0, π/2) and considering
solutions to the equations of motion in line with the assumption ∂ q̄/∂z ≡ 0, which
will be discussed in the next section. In this manner a configuration combining
the two-dimensional Couette (2DC) and the lid–driven cavity (LDC) basic flow is
obtained. The basic (steady-state) flows q̄ =(ū, v̄, w̄, p̄)T possess a velocity vector with
three non-zero velocity components; these can be obtained by solving (2.7)–(2.8) in
addition to

∂w̄

∂t
+

{
∂ψ

∂y

∂w̄

∂x
− ∂ψ

∂x

∂w̄

∂y

}
− 1

Re
∇2

2dw̄ = 0, (2.9)

subject to the boundary conditions

ū(x, y = 1) = cosφ, (2.10)

ū(x, y = 0) = ū(x = 0, y) = ū(x = 1, y) = 0, (2.11)

v̄(x, y = 0) = v̄(x, y = 1) = v̄(x = 0, y) = v̄(x =1, y) = 0, (2.12)

w̄(x, y = 1) = sinφ, (2.13)

w̄(x, y = 0) = w̄(x = 0, y) = w̄(x = 1, y) = 0. (2.14)

Solutions to the system (2.7)–(2.9) are obtained numerically, using the spectral
algorithm of the previous subsection. It is noted that at steady state solutions to
(2.9) may be obtained in a decoupled manner from those of (2.7)–(2.8), such that the
latter equations are first solved subject to (2.10)–(2.12); subsequently, (2.9) is solved
subject to (2.13)–(2.14). The limiting case φ = π/2 corresponds to the basic flow
q̄ =(0, 0, w̄, p̄)T with w̄ described by (2.5), while that obtained at φ = 0 is the LDC
basic flow q̄ = (ū, v̄, 0, p̄)T discussed in the previous section. The gradual departure of
the basic flow from the symmetric state described by (2.5) at the φ = π/2 limit may
be seen in the dependence of w̄(x, y) on φ at Re = 100 in figure 2.
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Figure 2. Dependence of w̄(x, y) on φ at Re = 100 visualized in terms of 20 isolines drawn
between the respective minimum and maximum values at φ = π/8, π/4 and 3π/8.

3. Global linear stability analysis
3.1. Theory

The present non-parallel linear stability analysis is concerned with flows which are
homogeneous in only one of the three spatial directions. Conceptually, the class of
problem which may be addressed in this framework is considerably broader than that
to which classical linear theory applies (Tollmien 1929; Drazin & Reid 1981; Schmid
& Henningson 2001). Within the framework of the present analysis a solution of the
equations of motion Q is decomposed into the form

Q(x, y, z, t) = q̄(x, y) + ε q̃(x, y, z, t) (3.1)

with q̄ = (ū, v̄, w̄, p̄)T indicating a steady two-dimensional basic flow, (ū, v̄, w̄)T and
p̄ denoting basic flow pressure. Superimposed upon q̄ are unsteady perturbations
q̃ with amplitude ε� 1. The decomposition (3.1) is substituted into the governing
equations. At O(1) the two-dimensional basic-flow terms satisfy the equations of
motion and are consequently omitted from the resulting system, while quadratic
terms in ε are neglected. Clearly, if a numerically obtained basic flow does not satisfy
exactly the equations of motion at O(1), in terms of either poor spatial resolution
or inadequate convergence in time, the associated eigenvalue problem results will be
unreliable. Care must therefore be taken regarding the quality of numerically obtained
basic flows; although modern tools for the numerical solution of the two-dimensional
equations of motion have matured sufficiently for this problem to be considered closed
(Karniadakis & Sherwin 1999; Deville, Fischer & Mund 2002), additional caution is
warranted when solving for the basic flow of a global instability analysis, compared
with the situation in classic linear theory.

At O(ε) all terms are independent of the spatial coordinate z and time t and so an
eigenmode Ansatz may be introduced, of the form

q̃(x, y, z, t) = q̂(x, y) exp(iΘ) + c.c. (3.2)

where Θ =βz−ωt . Complex conjugation is introduced in (3.2), since all three of q̂, β

and ω can in general be complex, while q̃ is real. In the temporal framework, as
considered here, β is taken to be a real and prescribed wavenumber parameter and
ω is the corresponding complex eigenvalue (to be determined). In the most general
case of a basic flow with three non-zero velocity components the following system
of equations for the determination of the eigenvalue ω and the amplitude functions
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q̂ =(û, v̂, ŵ, p̂)T results:

[L− (Dxū)]û− (Dyū)v̂ −Dxp̂ = −iωû, (3.3)

−(Dx v̄)û + [L− (Dy v̄)]v̂ −Dyp̂ = −iωv̂, (3.4)

−(Dxw̄)û− (Dyw̄)v̂ +Lŵ − iβp̂ = −iωŵ, (3.5)

Dxû +Dy v̂ + iβŵ = 0. (3.6)

Here L ≡ (1/Re)(D2
x +D2

y − β2)− ūDx − v̄Dy − iβw̄, Dx = ∂/∂x, Dy = ∂/∂y and Re
is a suitably defined Reynolds number.

The governing equations for all four problems considered herein may be derived
from (3.3)–(3.6). In both the pressure-gradient-driven rectangular duct flow and the
wall-bounded Couette flow the only basic flow velocity component is w̄, directed
along the wavenumber direction. In this case (3.4)–(3.6) simplify to

L1û−Dxp̂ = −iωû, (3.7)

L1v̂ −Dyp̂ = −iωv̂, (3.8)

−(Dxw̄)û− (Dyw̄)v̂ +L1ŵ − iβp̂ = −iωŵ, (3.9)

Dxû +Dy v̂ + iβŵ = 0. (3.10)

HereL1 ≡ (1/Re)(D2
x +D2

y −β2)− iβw̄. This formal simplification does not translate
into a reduction of the computing effort required for the solution of the partial
derivative eigenvalue problem since (3.7)–(3.10) is also a complex system of the
same size as the original problem (3.4)–(3.6). One algorithmic simplification that is
possible in the case of a single basic-flow velocity component w̄ along the wavenumber
direction has been followed by Tatsumi & Yoshimura (1990) who wrote (3.7)–(3.10) as
a system of two partial differential equations, namely the generalized Orr–Sommerfeld
and Squire system. The advantage of this approach is that the available computing
resources can be devoted to the resolution of two, as opposed to four, coupled
equations, thus achieving substantially higher resolution per eigenfunction than that
possible when using (3.7)–(3.10). The disadvantage is that derivatives of fourth order in
both of the two spatial directions and mixed derivatives of fourth order appear, which
need a higher number of collocation points to be described adequately, compared with
the second-order derivatives appearing in (3.7)–(3.10). Because of the latter reason we
solved the eigenvalue problem in its form of the system (3.7)–(3.10). An additional
difference between the approach of Tatsumi & Yoshimura (1990) and that followed
herein is that the former investigators took advantage of the symmetries existing in
the basic flow to consider different classes of permissible solutions separately, which
permits the solution of the instability problem on a quarter or half of the domain.
Although this offers decisive efficiency advantages compared with the approach
followed herein, these simplifications have not been invoked here in order to retain
the ability to address the possibility of modes for which no such symmetries exist
(indeed there are of course no such symmetries in the case of lid-driven cavity flows).
In this manner we recover the symmetries of the eigenvalue problem (when present)
as a result of our calculations, which offers additional validation of the algorithm.

However, one very useful simplification is possible without loss of generality in the
computationally very demanding case of LDC flow. In this case the basic flow vector
is (ū, v̄, 0, p̄)T, and so no preferential direction exists in the spanwise direction z such
that the eigenvalue spectrum must be composed of either stationary disturbances or
pairs of disturbances travelling in opposite z-directions. This physical fact may be
exploited by writing (3.3)–(3.6) as a real coefficient eigenvalue problem, by simply
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redefining

β ← iβ, ω← iω (3.11)

which has the significant algorithmic implication of halving the storage requirements
compared with those of the original problem; we emphasize here that this is not valid
for the other three classes of basic flows. The real eigenvalue problem that was solved
for the LDC flows was

[L2 − (Dxū)]û− (Dyū)v̂ −Dxp̂ = −ωû, (3.12)

−(Dx v̄)û + [L2 − (Dy v̄)]v̂ −Dyp̂ = −ωv̂, (3.13)

L2ŵ + βp̂ = −ωŵ, (3.14)

Dxû +Dy v̂ − βŵ = 0, (3.15)

where L2 ≡ (1/Re)(D2
x +D2

y − β2)− ūDx − v̄Dy .
For all four closed-system problems considered, the boundary conditions

û= v̂ = ŵ =0 are imposed on the perturbation velocity components at the walls.
Boundary conditions for the disturbance pressure do not exist physically; instead on
the boundaries we collocate the compatibility conditions

∂p̂

∂x
=

1

Re
∇2

2d û− ū
∂û

∂x
− v̄

∂û

∂y
, (3.16)

∂p̂

∂y
=

1

Re
∇2

2d v̂ − ū
∂v̂

∂x
− v̄

∂v̂

∂y
, (3.17)

derived from the Navier–Stokes equations at the boundary of the rectangular domains.

3.2. Algorithmic considerations

The characteristics of our algorithm are highlighted by contrasting them with the high-
order numerical approaches in the literature, namely those of Tatsumi & Yoshimura
(1990) and Ding & Kawahara (1998b). Compared with the spectral algorithm of
Tatsumi & Yoshimura (1990), the first difference is that we use a primitive variable
formulation in order to facilitate the study of non-zero basic flow velocity components
in more than one spatial direction; in this way a wider class of problems may be
studied, including that in the lid-driven cavity. As has been mentioned a further
advantage of the primitive variable formulation is that only first derivatives of the
basic flow and up to second derivatives of the eigenfunctions appear; low-order
derivatives are less sensitive to numerical discretization errors at modest resolution.
The second difference (for the reasons mentioned above) is that we use the full
domain on which general boundary conditions may be specified. Third, unlike the
traditionally used Chebyshev or Legendre polynomials we use an algorithm based on
arbitrary Jacobi collocation which permits spectrally accurate resolution of instability
modes with significant gradients away from the wall (also termed ’centre-modes’ in
the context of channel flow instability). The ability to place grid points in an optimal
manner offers a significant advantage over Legendre (or Chebyshev) collocation
in resolving any such modes that might occur, at reasonable computing cost. The
power of spectral methods to deliver results of high accuracy compared with finite-
difference discretizations at a fixed maximally affordable resolution, is fully utilized
in this type of problem. We also note that our code is shielded from the details
of the spectral basis functions and it is straightforward to interchange the latter
at will for diagnostic purposes before an optimum choice is made for production
runs. Fourth, high resolution demands are placed on the stability calculations in
order to resolve the need for large numbers of grid points in high Reynolds number
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cases and also in cases of large aspect ratio. For these problems the QZ algorithm
employed by Tatsumi & Yoshimura (1990) is inappropriate since the memory
and runtime requirements scale with the square and the cube of the number of
discretization nodes, respectively. The inverse Rayleigh iteration (Wilkinson 1965)
is also not practical since, like the QZ algorithm, it requires storage of auxiliary
matrices. Instead, we use the Arnoldi algorithm (Saad 1980) which delivers a number
of the eigenvalues in the neighbourhood of a specified estimate (usually in the vicinity
of the unstable/least-stable eigenvalue) at a small fraction of the cost pertinent to
an equivalent QZ or inverse Rayleigh procedure. In a first step either (3.7)–(3.10) or
(3.12)–(3.15) are written in the symbolic form

A= ωB, (3.18)

with the boundary conditions incorporated. The Arnoldi algorithm may be seen
as a conceptual link between the approaches of inverse Rayleigh iteration, which
delivers the most unstable eigenvalue, and the QZ algorithm which recovers the
full eigenvalue spectrum. By contrast, the Arnoldi algorithm delivers not only the
physically interesting most-unstable/least-stable eigenmode but also a number of
other eigenvalues in the neighbourhood of the specified target eigenvalue. The number
of eigenvalues delivered is determined by the freely chosen subspace dimension, the
limit of which is the leading dimension of matrices A and B. A so-called shift-and-
invert strategy is also implemented in our eigenvalue problem solver, according to
which instead of (3.18) one solves

ÂX = µX, Â = (A− σB)−1B, µ =
1

ω − σ
. (3.19)

Use of this technique, combined with the special structure of B in (3.18) results
in the need to store just one matrix, a modified version of the LU-decomposition
of A. For matrices of size of several gigabytes, the ability to store one (in the
Arnoldi algorithm) instead of four (in the QZ or the inverse Rayleigh iteration
algorithms) gives the former algorithm a decisive efficiency advantage compared with
the latter classic algorithms. In this respect we note that the Arnoldi algorithm
introduces an additional parameter to be specified, namely the estimated eigenvalue
σ in the neighbourhood of which the spectrum of the original problem is to be
resolved. Further parametric studies must therefore be performed in order for the
results obtained to be independent of this shift parameter. We note also that, while
it is difficult to compare aspects of accuracy and efficiency between ours and the
algorithm of Ding & Kawahara (1998b) since these authors use a finite-element
methodology as opposed to the spectral collocation used herein, both approaches
rely on Krylov subspace iteration methods. One recent successful application of the
algorithms employed herein for the solution of the most-general form of the global
eigenvalue problem (3.3)–(3.6) has been presented by Theofilis et al. (2003).

4. The stability analyses
4.1. The rectangular duct

In this section we revisit the rectangular duct flow whose global linear instability
was originally studied by Tatsumi & Yoshimura (1990) and present some algorithmic
aspects. Results were obtained using resolutions up to (Nx, Ny) = (72, 40) and a
constant Krylov subspace dimension of 400. The coupled resolution of two spatial
directions results in a matrix of leading dimension up to 1.1×104. Convergence studies
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A Re β ωr

3.5 36600 0.71 0.12353
4.0 18400 0.80 0.16187
5.0 10400 0.91 0.21167
6.0 8200 0.94 0.22925
8.0 6800 0.98 0.24963

25.0 5772 1.02 0.26960

Table 2. Critical frequencies ωr of mode I (Tatsumi & Yoshimura 1990) as a function of the
duct aspect ratio A.

were performed using resolutions up to the maximum of the available memory on
the hardware utilized, 6 Gbytes (the array Â in (3.19) is kept in core memory). The
fundamental symmetries expected in the eigenfunctions were recovered, and good
agreement was observed with the results of Tatsumi & Yoshimura (1990).

A naturally arising question of interest is whether use of this more general algorithm
permits the appearance of modes other than those reported by Tatsumi & Yoshimura
(1990) to appear in the global eigenspectrum. This question has been pursued by a
systematic examination of the instability of the flow using Re ∈ [1000, 50000] and
β = 0(0.25)6. In these ranges we were unable to find any unstable disturbance other
than those reported by Tatsumi & Yoshimura (1990). For the sake of completing the
information presented in the latter work, we have followed mode I and monitored
its critical conditions as a function of the duct aspect ratio. The critical frequency
results obtained are presented in table 2; the corresponding growth rates are less
than 10−5. The conclusion of this part of our work is that despite the use of a more
general algorithm for the solution of the partial-derivative eigenvalue problem and
extensive numerical experimentation the results presented by Tatsumi & Yoshimura
(1990) have been found to be the only linear instabilities in the rectangular duct flow.
A corollary of this is that the rectangular duct is more stable than its PPF idealized
counterpart and the question of subcritical instability in the duct remains open.

4.1.1. The effect of lateral walls on the spectrum of plane Poiseuille flow

In the limit A→∞ the basic flow (2.3) merges into the PPF parabolic profile and
one interesting question is the relationship between the eigenvalue spectra of pressure-
gradient-driven rectangular duct flow and PPF. This question was not addressed by
Tatsumi & Yoshimura (1990) who instead recovered the Orr–Sommerfeld and Squire
spectra by simply neglecting the flow derivatives in the lateral spatial direction.
Here we attempt to relate the two spectra in a more formal, continuous manner
by permitting the duct aspect ratio to attain large finite values while resolving both
inhomogeneous spatial directions.

In order to address this question we reverted to the QZ algorithm for the
calculation of the entire flow eigenspectrum. Since storage of four matrices is required
the attainable resolution is decreased considerably in comparison with the results
presented in the previous section. Available hardware has limited resolution to
Nx ×Ny = 211 Legendre collocation points in all subsequent runs, calling for 3.6
Gbytes core memory and O(104) CPU seconds runtime at 2.5 Gflops for the recovery
of the entire eigenspectrum at a single (Re, β) pair. We have lowered the Reynolds
number values to Re = [102, 103], kept a constant β = 1 and examined flows in
ducts having A ∈ [1, 100]. All recovered eigenvalues at this Reynolds number value
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Figure 3. The least-stable part of the PPF eigenspectrum recovered using Ny =40 (+) and
64 (×) collocation points to resolve the y-direction.

correspond to stable disturbances; without entering into a detailed discussion of
either issue here, we justify interest in stable eigenvalues from a physical point of
view on account of the subcritical instability of the rectangular duct flow, as well as
the potential role of the eigenspectrum in the framework of transient growth studies
(e.g. Reddy et al. 1998) which are yet to be performed in these rectangular ducts.

The results to be presented were confirmed by higher resolution runs using the
Arnoldi algorithm and Nx ×Ny =212 points, which necessitates 5.6 Gbytes core
memory and 5 × 103 CPU seconds runtime at 3.6 Gflops. From a numerical point
of view, the modest resolution used in the QZ runs permits recovery of only a small
part of the least-stable eigenvalue spectrum using 64-bit arithmetic. This well-known
result (Dongarra, Straughan & Walker 1996) is highlighted in the present partial-
derivative eigenvalue problem context in figure 3. Here the PPF linear eigenspectrum
is recovered at Re = 103, β = 1 by permitting A→∞, in practice taking A= 100.
Since we solve the linearized Navier–Stokes and continuity equations, rather than the
single Orr–Sommerfeld equation, both the Orr–Sommerfeld and the Squire spectra
are to be found in this result. The key point here is that the least-stable part of
the PPF eigenspectrum can be recovered accurately from (3.6)–(3.5) in the limit
|∂ q̄/∂x|� |∂ q̄/∂y|, including the prediction of the angle θ = π/4 between the axis
ωi = 0 and the P-family of eigenmodes (Mack 1976); in other words the global
eigenvalue spectrum is found to merge into that delivered by the classic linear theory
at the appropriate limit. The numerical artifact of splitting of the (ωr = 2/3, ωi→−∞)
part of the eigenspectrum in the low-resolution result is also shown in figure 3. An
increase of Nx does not alter this result; rather Nx copies of the respective PPF
eigenvalues are recovered. It is an increase in Ny which delivers additional ωi→−∞
eigenvalues on the ωr = 2/3 line.

Figure 4 shows the effect of a variable aspect ratio on the least-stable part of
the eigenspectrum for A= 1, 2, 3, 4, 5, 10, using a resolution of (Nx, Ny) = (32, 64)
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Figure 4. (a) The shifting of the least-stable part of the rectangular duct eigenspectrum with
decreasing aspect ratio A, obtained using a resolution (Nx,Ny) = (32, 64) Legendre collocation
points at Re = 100. (a) Detail of the same result near the junction of the eigenspectrum
branches. The open symbols show the corresponding PPF eigenspectrum.
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σ = 1.0

Resolution DOF× 103 Size (Mb) ωr ωi ωr ωi

20× 20 1.6 48 0.9021 −0.0624 0.9001 −0.0716
29× 29 3.3 202 0.9031 −0.0622 0.8990 −0.0696
40× 40 6.4 630 0.9033 −0.0622 0.8991 −0.0703
57× 57 13.0 2730 0.9033 −0.0622 0.8991 −0.0703

Table 3. Convergence studies in wall-bounded Couette flow at A = 2,Re = 3800, β = 1. Shown
are the two least-stable eigenvalues (ωr, ωi) in the neighbourhood of σ = 1.0 as functions of
resolution of the two spatial directions and total number of degrees of freedom (DOF).

Legendre collocation points. Point symbols denote the eigenspectrum of the
rectangular duct and open symbols have been used for the PPF eigenspectrum,
which has been superimposed on the former for comparison. Resolution studies (not
presented here) confirm the integrity of these results. Some observations worthy of
mention are the following. In addition to the PPF branch (ωr = 2/3, ωi→−∞), other
branches with (ωr = const, ωi→−∞) are introduced on account of the lateral walls
of the duct. The available resolution does not permit a definitive statement regarding
the values of the respective constant frequency values but what can be confidently
stated is that all duct branches have

ωr � 2/3, (4.1)

i.e. the frequency of the PPF S-family represents an upper bound for all rectangular
duct modes which pertain to the newly found rectangular-duct S-families. At the low
resolution of the x-direction the additional branches are already present while their
number increases when resolution of this direction is increased. A hint regarding
the origin of the additional branches is given by the large-A results. It can be seen
in figure 4 that several of the duct modes emanate from their PPF counterparts,
with clusters of duct modes clearly being associated with a single PPF eigenvalue.
No doubt on account of the marginal resolution, the picture becomes increasingly
blurred as A→ 1; what does become clear in this limit is that several duct modes
cluster into two additional branches of the P family. Further quantification of these
qualitative observations is necessary but cannot be undertaken on present-generation
hardware.

4.2. Wall-bounded Couette flow

In a manner analogous to that presented in the previous section, we investigate the
limit of large aspect ratio in order to connect our results with eigenmodes of the
one-dimensional flow. A large number of runs were performed in finite-aspect-ratio
ducts; without prior guidance regarding regions of potential instability in this flow
we have first established adequacy of resolution and associated subspace dimension
at a given Reynolds number. In table 3 we present convergence history results at
A= 2, Re = 3800, β =1 using a subspace dimension m =200. We have sampled the
domain σ ∈ [0, A] and present the two least-stable eigenvalues in the neighbourhood
of two different locations in parameter space, σ =0.5 and 1; results identical to
those at σ = 1 were obtained when using a shift parameter σ =2, suggesting that the
eigenvalue spectrum of the wall-bounded Couette flow is also confined in ωr ∈ [−1, 1].
Further observations made are the following. As ωr→ 1 we find that ωi ↑ 0 which
results in easier resolution of the spectrum in the neighbourhood of ωr = 1 at a given
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discretization compared with that near |ωr|� 1. One obvious reason for this is that
the eigenspectrum appears to be composed of increasingly stable modes as ωr→ 0
in a manner analogous to the Y-shaped PCF eigenspectrum. A more subtle reason
related to the difficulty of resolving the neighbourhood of ωr = 0 in the spectrum
has been extensively discussed in the context of the stability of the linear profile by
Dongarra et al. (1996) and is related to the finite precision at which computations
are performed. However, the size of the matrices of the two-dimensional eigenvalue
problem prohibit use of 128-bit arithmetic in the context of the present calculations.

From a physical point of view the results of table 3, which are typical of
results obtained at different aspect ratios, suggest that the least-stable part of the
eigenspectrum is resolved well in the present calculations up to the highest Reynolds
numbers examined, Re≈ 5000. Indeed, while resolutions in excess of 582 collocation
points are still inadequate to recover a converged eigenvalue in the neighbourhood
of σ = 0.5 or lower, 302 points suffice to yield two converged decimal places at σ =1.
Calculations performed using high Krylov subspace dimension have demonstrated
that the analogue of the well-known Y-shaped eigenvalue spectrum of PCF also
exists in the presence of lateral walls.

Compared with the infinite-aspect-ratio counterpart of this flow at Re = 3800, β = 1
(Dongarra et al. 1996) it can be seen that the resolved parts of the spectrum of the
A= 2 flow correspond to more strongly damped eigenmodes. This is an observation
which has been repeated at all aspect ratios examined. In a large but finite number of
calculations performed up to the highest Reynolds numbers that could be addressed
numerically we have have consistently made two observations: first, no unstable modes
have been found to exist in wall-bounded Couette flow and secondly a reduction of
the aspect ratio from infinity to a finite value larger than unity has a stabilizing effect
on the eigenspectrum of the PCF.

4.3. The lid-driven cavity flow

We obtained basic flow solutions on rectangular spectral collocation grids using high
resolution inaccessible to the instability analysis and used a cubic spline interpolation
scheme to transpose the basic flow solution on to the stability analysis grid. Care has
been taken that the basic flow solutions be converged in time to within a tolerance
tol ≡ |(ft0+∆t − ft0 )/ft0 |< 10−12, where f is an integral measure of the flow or the
value of a local flow quantity, resulting at moderate Reynolds numbers Re∼O(103)
in integration times t0 > 2000 when initializing the basic flow solution from zero and
t0 > 1000 when using the converged solution at a neighbouring Reynolds number
value to obtain the steady state at a new Reynolds number value.

4.3.1. The square cavity

We have first investigated a low Reynolds number value, Re =200, where the
previously published sets of results are consistent. Only Ramanan & Homsy (1994)
have presented tabulated values of their results, while Ding & Kawahara (1998a ,b)
have restricted themselves to graphical comparisons with the results of Ramanan &
Homsy (1994). In table 4 we show a comparison of our results with the tabulated
and graphically reproduced results of the previous investigations; we see that the
discrepancy between the previous and the present results is within that between the
results of Ramanan & Homsy (1994) and Ding & Kawahara (1998b). We will return
to the point of convergence of instability results shortly. In general, however, we
notice a good qualitative and a reasonable quantitative agreement of the previous
and the present instability analyses, which all confirm the experimentally established
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RH
DK

Present results

β ωi ωr ωi ωi ωr

1 0.34 ± 0.00 0.3183 0.3297 ± 0.0000
2 0.23 ± 0.00 0.2248 0.2267 ± 0.0000
3 0.29 ± 0.11 0.2924 0.2954 ± 0.1073
4 0.30 ± 0.28 0.2969 0.2956 ± 0.2810
5 0.34 ± 0.43 0.3431 0.3404 ± 0.4260
6 0.39 ± 0.58 0.3893 0.3844 ± 0.5821
7 0.41 ± 0.67 0.4073 0.4013 ± 0.6733
8 0.45 ± 0.72 0.4637 0.4587 ± 0.7232
9 0.54 ± 0.76 0.5504 0.5473 ± 0.7622

Table 4. Comparison of the least-stable eigenmode at Re = 200 to the results of Ramanan &
Homsy (1994) (RH) and the graphically (digitally) reproduced growth rate result of Ding &
Kawahara (1998b) (DK).
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Figure 5. Comparison of the dependence of ωr and ωi on β as obtained by Ramanan &
Homsy (1994) (dash-dotted line), Ding & Kawahara (1998b) (dashed line) and the present
results (symbol) at Re = 200.

fact of stability of the two-dimensional basic flow at this Reynolds number. The same
results are presented in graphical form in figure 5 for the dependence of the frequency
ωr and the damping rates ωi (defined as having an opposite sign to that of the present
work) on the spanwise wavenumber. While the frequency of this instability appears
to be a smooth function of the wavenumber, the dependence of the damping rate on
the wavenumber does not follow the familiar bell-shaped curve pattern; one possible
explanation for this observation is that the results of table 4 and figure 5 do not
correspond to a single eigenmode. We have verified this conjecture by reverting to the
QZ algorithm while lowering the Reynolds number to Re = 100 in order to ensure
convergence. A very large number of computations were then performed to recover
the full eigenvalue spectrum. Qualitatively the picture was found to be analogous to
that described (in a different, but related context) by Stocker & Duck (1995), in which
modes continuously merge and split if one monitors the dependence of ωi on β , while
that of ωr on β exhibits a ‘honeycomb’ pattern.
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BF Grid
642 962 1282 1602

EVP Grid ωi ωr ωi ωr ωi ωr ωi ωr

32× 32 0.0000 ± 0.4988 0.0006 ± 0.4974 0.0021 ± 0.4963 0.0037 ± 0.4961
40× 40 0.0041 ± 0.4985 0.0033 ± 0.4980 0.0034 ± 0.4986 0.0030 ± 0.4959
48× 48 0.0027 ± 0.4967 0.0017 ± 0.4992 0.0043 ± 0.4980 0.0046 ± 0.4976
56× 56 0.0039 ± 0.4951 0.0038 ± 0.4984 0.0043 ± 0.4981 0.0043 ± 0.4979

Table 5. Convergence history of the least-stable eigenmode at Re = 900, β =7.35, using a
Krylov subspace dimension m= 400 as function of the resolutions used for the basic flow (BF)
and the eigenvalue problem (EVP).

S1 T1 T2 T3

EVP Grid ωi ωr ωi ωr ωi ωr ωi ωr

16× 16 0.3420 ± 0.0000 0.1280 ± 0.6651 0.0232 ± 0.4924 0.0958 ± 1.3140
24× 24 0.1426 ± 0.0000 0.1073 ± 0.6929 0.0064 ± 0.4976 0.1048 ± 1.3838
32× 32 0.1417 ± 0.0000 0.1084 ± 0.6936 0.0021 ± 0.4963 0.1071 ± 1.3832
40× 40 0.1420 ± 0.0000 0.1067 ± 0.6924 0.0034 ± 0.4986 0.1032 ± 1.3850
48× 48 0.1423 ± 0.0000 0.1071 ± 0.6929 0.0043 ± 0.4980 0.1045 ± 1.3848
56× 56 0.1425 ± 0.0000 0.1071 ± 0.6928 0.0043 ± 0.4981 0.1044 ± 1.3846

Table 6. The four least-stable modes at Re = 900, β = 7.35.

We now turn our attention to a Reynolds number value Re = 900, with a spanwise
wavenumber β =7.35, which is supercritical according to Ramanan & Homsy (1994),
who predicted Recrit≈ 594, subcritical to those reported by Ding & Kawahara
(1998a, b), Recrit≈ 1025 and Recrit≈ 920 respectively, and within the range of Reynolds
numbers at which instability has observed experimentally by Aidun et al. (1991) and
Benson & Aidun (1992), Recrit ∈ [825, 925]. At this Reynolds number we carefully
monitored the convergence of the eigenvalue calculations with respect to both the
basic flow and instability analysis grids. Table 5 indicates that for this particular
test case, a basic flow grid of 128 points in both spatial dimensions is sufficient for
up to four-decimal-place accuracy of the eigenvalue. A scan of the parameter range
Re ∈ [775, 1100] and β ∈ [0, 30] was performed in increments of 25 in Reynolds
number and 0.5 in wavenumber, at a total cost of 280 CPU hours on a NEC SX-4
machine requiring up to 1.6 Gbytes of memory (excluding the cost of the calculation
of the basic flows). In addition to the least-stable mode, a plethora of stable modes
is recovered by the Arnoldi algorithm; a number of these are presented in table 6.
The mode found by Ding & Kawahara (1998b) is denoted here by T2 and is indeed
the least-damped eigenmode at these parameter values. The nomenclature and order
of presentation of the additional modes will become apparent in what follows. At
these conditions, however, the additional modes are more strongly damped than those
discussed by Ding & Kawahara (1998b) and consequently less interesting from the
physical point of view. Note that a stability analysis grid composed of 482 collocation
points is seen to be adequate for the results to have converged to nearly four decimal
places.

Further evidence of the integrity of our results is presented in figure 6 showing a
comparison between the growth rates of mode T2, as determined by our calculation
(indicated by a solid line), and the graphically reproduced results of Ding & Kawahara
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Figure 6. Dependence of the growth rate ωi on the wavenumber β as obtained by Ding &
Kawahara (1998b) (dashed) and our calculations (solid).

(1998b), shown as dashed lines; the agreement is very good. In view of these results
(and many other results computed but not reported here), further analyses of the
square lid-driven cavity flow were generally obtained using a grid for the recovery of
the basic flow comprising 1282 collocation points and a grid for the discretization of
the global eigenvalue problem using 482 collocation points per eigenfunction.

We now move on to consider neutral stability curves for the first four modes.
These were obtained by first linearly interpolating between two data curves, namely
that corresponding to the least-stable disturbances pertinent to each mode and that
at the next higher Reynolds number calculated. Next, the resulting data were used
to calculate the critical parameters, again by linear interpolation. The neutral stable
curves are shown in figure 7(a). Here we have adopted the following notation: the
stationary mode S1 is denoted by a circle, and the travelling modes T1, T2 and T3
by a square, diamond and triangle, respectively. The critical Reynolds numbers and
wavenumbers β for these first four modes are presented at aspect ratio A= 1 in table 7.
The plot in figure 7(b) retains the notation introduced and shows a comparison of
frequency f ≡ ωr/2π with experimental data over a range Reynolds numbers. Note
that in computing these results we have varied β in such a way as to predict the most-
amplified/least-unstable modes. We see that our results for mode T1 compare very
favourably with the travelling mode monitored in the experimental data of Benson &
Aidun (1992); at its largest, in the neighbourhood of Re =1050, β = 9, the discrepancy
between the experimental result and our prediction of the most unstable travelling
mode is O(0.7%). The present results on the square lid-driven cavity flow are in
very good agreement with those presented by Theofilis (2000) and Albensoeder et al.
(2001b), both of which have independently established the existence of three modes,
one stationary (S1) and two travelling (T1 and T3), beyond that earlier reported by
Ding & Kawahara (1998b).

In figure 8 we present the spatial structure of the eigenfunctions of the four
most unstable modes for the square lid-driven cavity at Re = 1000. The respective
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Figure 7. (a) Neutral curves of the first four eigenmodes in the square lid-driven cavity.
Stationary mode S1 (circle); travelling modes T1 (square), T2 (diamond), T3 (triangle).
(b) Frequencies of these eigenmodes compared with the experimental result of Benson &
Aidun (1992) (star symbol).

wavenumbers are β =15 for modes S1, T1 and T3 and β = 7.5 for mode T2,
approximately corresponding to maximally amplified linear conditions. In all four
cases an isosurface of the magnitude of the normalized disturbance vorticity is
plotted, at an arbitrarily chosen level of 0.1, within the domain (x ∈ [0, 1]) × (y ∈
[0, 1]) × (z ∈ [0, Lz]), where Lz = 2π/β indicates one (spanwise) periodicity length.
Most activity takes place in the neighbourhood of the upstream wall of the cavity,
x = 0, as has already been reported by Ding & Kawahara (1998a ,b) for mode T2,



Viscous linear stability analysis of rectangular duct and cavity flows 273

Mode

S1 T1 T2 T3

Aspect ratio Recrit

0.5 1593.94 1466.89 1630.02 1712.44
1 782.61 844.57 922.10 960.54
2 541.05 544.32 360.09 620.11
3 541.03 468.60 303.76 581.17
4 596.20 290.00 561.22 572.90

βcrit

0.5 31.31 13.13 7.20 31.91
1 15.37 15.77 7.40 14.31
2 21.11 11.24 5.70 10.93
3 10.91 8.75 5.00 11.04
4 11.40 5.00 4.20 10.10

fcrit ≡ 2π/{ωr}crit
0.5 0 0.1663 0.0760 0.2221
1 0 0.1012 0.0790 0.2145
2 0 0.0905 0.0926 0.2164
3 0 0.0919 0.0819 0.2202
4 0 0.0901 0.0118 0.2216

Table 7. Critical parameters of the least-stable modes as function of aspect ratio.
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Figure 8. Spatial distribution of the magnitude of disturbance vorticity of the most-
unstable eigenmodes in the square lid-driven cavity. (a) S1 (Re = 1000, β =15), (b) T1 (Re =
1000, β = 15), (c) T2 (Re =1000, β = 7.5), and (d) T3 (Re = 1000, β =15).

with two distinct disturbance peaks within each periodicity length identifiable on the
cavity lid, y = 1, in all eigenmodes. Overall, however, there are very few qualitative
differences to be found in the spatial structure of the eigenfunctions of the four most
unstable cavity modes.

From the point of view of identification, either in experiment or by DNS, of
the global eigenmodes documented here we note the following. S1 is the only
amplified eigenmode in the region Re ∈ [785, 845]; since this is a stationary mode its
amplification is expected to be observed as a spanwise modulation of the steady
flow, having a periodicity length related to the most unstable wavenumber by
Lz = 2π/β ≈ 0.41 cavity length/depth units. If the Reynolds number is taken in
the range Re ∈ [845, 925] the travelling mode T1 also becomes unstable. Since the
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wavenumber vector is normal to the plane on which the steady basic flow develops,
the complex conjugate of the T1 eigenmode is also a solution of the disturbance
equations (3.12)–(3.15) and the two complex-conjugate modes form a standing wave
pattern which grows at the rate of T1, linearly superimposed upon the growing S1
mode. On the other hand, the most amplified wavenumbers of S1 and T1 lie quite close
to each other and the only qualitative difference with the situation in Re ∈ [785, 845]
is the ability to measure by power-spectral analysis the frequency of the travelling
mode T1. Contrary to the conjecture put forward by Ding & Kawahara (1998b),
it appears that it was mode T1 that was measured by Benson & Aidun (1992). At
Re ∈ [925, 960] the situation changes significantly on account of the amplification of
mode T2. This instability has a frequency distinct from that of T1, which should also
be identifiable in the spectrum (but has not been reported by Benson & Aidun 1992).
Interestingly, the most unstable wavenumber of the T2 eigenmode is approximately
half that of the two previously amplified global eigenmodes, such that the linear
amplification of T2 alongside that of S1 and T1 may be mistakenly perceived as
amplification of a subharmonic of mode T1. This picture changes quantitatively (but
not qualitatively) by the amplification of T3 at Re > 960, since on the one hand
an additional frequency is introduced but on the other hand the most unstable
wavenumber of T3 is in the neighbourhood of those of S1 and T1 and the linear or
nonlinear amplification of the three stronger eigenmodes will dominate the dynamics
of the transition process beyond this Reynolds number value. Renewed experimental
or DNS efforts focusing on the Reynolds number ranges discussed here and aided
by the results of table 7 are desirable in order to identify the nonlinear modifications
to the above linear laminar–turbulent transition scenario. However, unlike the cases
of the rectangular duct and the wall-bounded Couette flow, flow in the lid-driven
cavity appears to undergo laminar–turbulent transition on account of a linear, albeit
BiGlobal, instability mechanism.

As a final note on the square LDC flow, we address the question of unsteadiness
of the two-dimensional lid-driven cavity flow and the well-documented discrepancy
between two-dimensional (Ghia et al. 1982; Schreiber & Keller 1983) and three-
dimensional (Kim & Moin 1985) numerical simulation results in the lid-driven cavity.
We return to the square lid-driven cavity, for which it is well-established that the upper
limit for the Reynolds number below which a steady-state solution can be obtained
in two-dimensional simulations is Re≈ 104. This result is put on a firm theoretical
basis using the present BiGlobal linear theory by monitoring the linear amplification
of the two-dimensional (β = 0) global eigenmode. To this end we have obtained
steady two-dimensional basic flows in the square cavity in Re ∈ [102, 0.8 × 104]
and present in figure 9 the results of solution of the eigenvalue problem (3.12)–
(3.15) for the two-dimensional global mode. The progressive destabilization of the
two-dimensional basic flow can be inferred from this result, which also explains the
increasingly long integration times required to obtain a steady state when solving
the time-dependent equations of motion as Re increases, in terms of the diminishing
magnitude of the damping rate of the least-stable global flow eigendisturbance.
Regarding the discrepancy between two- and three-dimensional simulation results, it
is clear that this will manifest itself at supercritical conditions for mode S1. While a
two-dimensional DNS will produce steady-state solutions of the equations of motion
above Re≈ 783, a three-dimensional simulation above this Reynolds number value,
in which Lz = 2π/β is chosen according to the present theoretical results, will initially
show exponential amplification of mode S1, leading to nonlinearity and departure
from the two-dimensional steady-state solution.
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Figure 9. Dependence of the damping rate ωi of the least-damped two-dimensional (β = 0)
global eigenmode on Re in the square lid-driven cavity. Symbols indicate the Reynolds number
values at which the partial-derivative eigenvalue problem was solved.
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Figure 10. Neutral modes of a rectangular lid-driven cavity. A =0.5.

4.3.2. The rectangular lid-driven cavity

Next we investigate the effect of variable aspect ratio on the instability of the
lid-driven cavity flow. Figures 10–13 show the neutral loops of the most-unstable
modes in cavities of aspect ratio A= 0.5, 2, 3 and 4 (see also figure 7 for unity aspect
ratio results). The critical values are also tabulated in table 7 and the following
observations are made. An increase of the aspect ratio is consistently found to have
a destabilizing effect on all eigenmodes of the lid-driven cavity flow. At the lowest
aspect ratio value examined, A= 0.5, a multitude of modes have been found with at
least three of them having critical Reynolds numbers Recrit ∈ [1400, 1700]. At this
aspect ratio the travelling mode T1 is the most unstable eigendisturbance, closely
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Figure 11. Neutral modes of a rectangular lid-driven cavity. A = 2.
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Figure 12. Neutral modes of a rectangular lid-driven cavity. A = 3.

followed by the stationary mode S1 and the travelling mode T2. At A= 1, as has been
seen, S1 overtakes T1, which is in turn more unstable than T2 and T3. A qualitative
difference between the A= 0.5 and A= 1 results is that by contrast to the former, in
the latter case the stationary and the travelling modes T1 and T3 are clustered in
approximately the same wavenumber region around β = 15, while T2 is isolated from
the rest, centred around β = 7.5. The doubling of the aspect ratio from A= 0.5 to 1
results in an approximate halving of the critical Reynolds number to Recrit≈ 800.† A
further increase of the aspect ratio from A= 1 to A= 2 again results in approximately

† The most unstable mode at the different aspect ratios does not remain the same and the
concept of a critical Reynolds number is used here to signify that pertaining to the most unstable
mode at each aspect ratio value
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Figure 13. Neutral modes of a rectangular lid-driven cavity. A = 4.

halving the critical Reynolds number value from Recrit≈ 800 at A= 1 to Recrit≈ 400
at A= 2. Indeed, it could be argued that a Reynolds number based on cavity width
rather than depth might be more appropriate, but then this would be inconsistent
with previous published work on cavity flows. The separation around the tips of the
neutral loops between mode T2 on the one hand and all other modes on the other
persists at A= 2; one striking difference between the results at A= 1 and 2 is that in
the latter case mode T2 has overtaken all other BiGlobal instabilities in the cavity
in such a way that it is the only unstable disturbance in a wide Reynolds number
range Re ∈ [360, 580]. The results at A= 3 are qualitatively quite similar to those
at A= 2, with mode T2 being the most-unstable disturbance, although here mode
T1 again turns out to be more unstable than mode S1. A quantitative difference
between the results at A= 2 and 3 is that the wavenumbers of the unstable modes
are already merging together at about Re = 500 for the latter aspect ratio as opposed
to almost 800 for the former, such that the experimental identification of the various
eigenmodes in an A= 3 cavity may be very difficult past Re≈ 500. A further twist
in the picture is seen in the A= 4 results. Although modes S1, T2, T3, . . . are all
more stable than their lower aspect ratio counterparts, the instability of the flow is
again dominated by that of mode T1, which encompasses all wavenumber ranges
of all other unstable eigenmodes. Mode T1 at A= 4 has a critical Reynolds number
Recrit≈ 300, approximately half that of the other modes at this aspect ratio value. The
results on the dependence of the critical Reynolds number on the aspect ratio are
summarized in figure 14 for the four most-unstable eigenmodes. It may be seen that a
sharp decrease of the critical Reynolds numbers of the different modes as the aspect
ratio increases from low values is followed by much milder variation of Recrit beyond
A � 2 where the critical Reynolds numbers of modes S1 and T3 approximately remain
constant at Re≈ 600, while that of mode T1 reaches a minimum at A≈ 2.75 followed
by an increase with A, up to the highest aspect ratio values examined. The critical
Reynolds number of mode T1 decreases with increasing aspect ratio, but then reaches
a minimum at approximately the A value where Recrit of T2 has a minimum, also. Two
crossover points between most unstable disturbances may be singled out on this plot,
(A, Re)≈ (1.2, 720) and (3.5, 400); the first corresponds to the location in parameter
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Figure 14. The critical Reynolds number of the most-unstable lid-driven cavity modes as a
function of the cavity aspect ratio. Line styles as figure 12.
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Figure 15. The critical frequency of the most-unstable lid-driven cavity modes as a function
of the cavity aspect ratio. Line styles as figure 12.

space where the most-unstable eigenmode of the cavity changes from a stationary to a
pair of travelling eigenmodes, while at the second point the most unstable eigenmode
changes its character from a T2 to T1 disturbance. A crossover between the T1 and
T2 modes is also to be observed at A< 1, where its significance is moderated by
the fact that at the latter conditions mode S1 is the most unstable eigendisturbance.
This interpretation of the dependence of critical Reynolds number on aspect ratio is
intricately complicated by the results of figure 15, where the critical frequency of the
same modes is plotted against aspect ratio. It is seen that the frequency of eigenmode
T3 is well separated from that of modes T1 and T2 for all but the lowest aspect ratio
value examined and remains practically constant with aspect ratio. The constancy
of the frequency of T2 with aspect ratio at A> 1 is also to be seen in these results.
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However, eigenmode T1 appears to have a frequency close to that of T3 at low
aspect ratio values which smoothly merges into that of T2 at A slightly above unity
up to about A= 3; then, the frequency of mode T2 sharply decreases with A. The
conclusion from the latter observation is that the only discriminating characteristic
to discern experimentally between eigenmodes T2 and T3 at A> 1 is the respective
critical Reynolds numbers and most unstable wavenumbers. However, the closeness
of the frequencies may make isolated observation of the two modes at A> 1 rather
difficult. The present theoretical results suggest that experimental identification of
these distinct eigenmodes should be undertaken at A � 1. In this respect, we note that
the domain in which the basic flow is obtained (and the subsequent instability analysis
is performed) has an influence on the BiGlobal eigenmode characteristics. In their
recent work, Albensoeder et al. (2001b) have examined the stability of rectangular lid-
driven cavity flow. However, we were unable to confirm the results of these authors in
spite of a number of very careful computations (and taking into account the different
non-dimensionalizations when studying rectangular geometries), and in spite of the
quite good agreement in the square geometry case.

4.4. The 2DC–LDC flow

We finally turn our attention to the flow established in the duct shown in figure 1
by motion of the lid at a constant speed of unity and angles φ ∈ (0, π/2). In view
of the requirements posed by the subsequent stability analysis on the quality of the
underlying basic flows, as identified in the preceding LDC flow stability analysis, 1282

spectral collocation points have been used for the recovery of the 2DC–LDC basic
states analysed in this section. All steady states have been obtained at a single aspect-
ratio value of A= 1, at three angle values φ = π/8, π/4 and 3π/8 and several Reynolds
number values, Re ∈ [0, 1000], of which only those interesting from a stability analysis
point of view, Re = 800, 900 and 1000 will be discussed in what follows. Numerical
solutions to the partial-derivative eigenvalue problem in this class of flows require
a level of computational effort which is an order-of-magnitude higher than that
in the LDC flow class. The reason is the existence of all three basic flow velocity
components in the 2DC–LDC flow which results in the need to solve a complex
two-dimensional eigenvalue problem. The computing effort is then comparable with
that in the pressure-gradient-driven duct and the wall-bounded Couette flows, and
can be met by present-day hardware (Theofilis et al. 2003).

At Re = 800 and all three values of φ examined, a scan of the wavenumber range
β ∈ [0, 25] did not deliver unstable eigenmodes. On the other hand, several such
modes were found at the higher Reynolds number values studied, Re = 900 and 1000;
results are summarized in figure 16 where unstable eigenmodes obtained at three
angles φ = π/8, π/4 and 3π/8 and β ∈ [0, 25] are shown.

At φ = π/8 one observes the counterparts of modes T1, T2, T3 and T4 of the
LDC flow, a result which points to the continuity and persistence of these modes
in the 2DC–LDC flow at small values of φ. At φ = π/8 relatively short wavelengths
are amplified, the range of Lz =2π/β extending approximately in the range Lz ∈
(0.3, 1.25). This range corresponds to that of maximally amplified instabilities in the
φ = 0 (LDC) flow. As the angle φ increases, several interesting effects can be observed.
First, all modes are damped substantially; the maximum amplification rate at φ = π/4
is a factor two smaller than that at φ = π/8. Second, at φ = π/4 modes amalgamate
together so that at this angle it is difficult to identify the discrete LDC modes found at
φ = 0 and their counterparts found in the 2DC–LDC flow at φ = π/8. In an intriguing,
and probably counter-intuitive manner in view of the results of § 4.2, a further increase
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Figure 16. Dependence of ωi on β (a) and ωr (b) at three angles φ = π/8, π/4 and 3π/8 and
two Reynolds numbers Re = 900 (· · · · ·) and 1000 (——).

of the angle to φ =3π/8 results in an increase of the amplification rates compared
to those at φ = π/4 back to levels corresponding to those at φ = π/8. The range of
amplified wavenumbers systematically shrinks as φ is increased; consequently, the
periodicity lengths within which amplified disturbances may be found change from
(approximately) the values of LDC flow at φ = π/8 to Lz ∈ (0.5, 1.25) at φ = π/4 and
then shift to Lz ∈ (1, 3) at φ = 3π/8.

Turning to the dependence of the amplification rates on the disturbance frequencies,
also shown in figure 16, one notes that an increase of φ results in a systematic
decrease of the range of amplified ωr. Another interesting aspect of the frequencies
of the amplified eigendisturbances identified in the present results is the near-linear
dependence of ωr of the amplified modes on β , seen in figure 17. Table 8 quantifies
this effect in terms of slopes of the straight lines ωr = ω∗r + λ(β − β∗) approximating
the dependence of ωr on β of the different modes examined. Finally, in all results
obtained the (expected) stabilizing effect of lowering the Reynolds number at constant
φ may be observed. However, it should be noted that this effect is different for the
different modes and is substantially more pronounced at low φ values.
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Figure 17. Dependence of ωr on β at three angles φ = π/8, π/4 and 3π/8 and two Reynolds
numbers (a) Re = 900 and (b) 1000.

φ λ (β∗, ω∗r )1 (β∗, ω∗r )2 (β∗, ω∗r )3

π/8 1/6 (8, 1.0) (15, 1.2) (15, 0.5)
π/4 0.3 (10, 0.75) (7, 0.5) (6, 0.5)
3π/8 0.4 (5, 1.0) (4, 1.0) (3, 1.0)

Table 8. Slopes λ and coordinates (β∗, ω∗r ) of the points defining the straight lines which
approximate the linear dependence of the frequency ωr of three amplified eigenmodes on the
spanwise wavenumber β in 2DC–LDC flow at Re = 900 and three φ values.

5. Discussion
Our concern here has been with three-dimensional global linear instability of four

classes of two-dimensional steady basic flows developing in rectangular enclosures.
Flow has been taken to be homogeneous along the axial direction of the ducts
considered, permitting an expansion of eigendisturbances in normal modes along
that spatial direction. The other two spatial directions are fully resolved, leading to
a two-dimensional, partial-derivative eigenvalue problem describing temporal linear
stability of the respective flows. This global (BiGlobal) eigenvalue problem has been
solved numerically, using spectral collocation and Krylov subspace iteration for the
recovery of the leading eigenvalues.

In the first flow addressed, pressure-gradient-driven flow in a rectangular duct
defined by four stationary walls, we have fully confirmed the linear instability results
of Tatsumi & Yoshimura (1990) who used a somewhat different numerical procedure
to that of the present work. No new modes were found in the rectangular duct,
despite extensive numerical experimentation using an approach in which attention
is not confined to modes of special symmetries. The effect of the introduction of
lateral walls in a linear framework is not sufficient to explain the discrepancies
between experimental (Kao & Park 1970) and theoretical (Tatsumi & Yoshimura
1990) results. On the contrary, lateral walls were found by Tatsumi & Yoshimura
(1990) to stabilize the PPF eigenspectrum; here, lateral walls were shown to introduce
additional (ωr = const, ωi→ −∞) branches analogous to the P-family of PPF, (Mack
1976), all of which have ωr < 2/3, while in the limit of a square duct the S-family
of PPF is found to split in two parts of stable disturbances. In the second flow
examined here, lateral walls are introduced to form the wall-bounded analogue of
the PCF, in which flow is driven by the constant-speed motion of one wall along
the homogeneous direction; in this direction the pressure gradient is taken to be
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zero. Only stable eigenmodes were found in wall-bounded Couette flow. In a manner
analogous to PCF, its eigenspectrum was found to be confined in ωr ∈ [−1, 1] and
also to have the familiar Y-shape.

By contrast to these two flows, in which the basic flow direction and the wavenumber
vector are parallel, in the third flow considered, the classic lid-driven cavity, the
wavenumber vector is normal to the plane in which the basic flow varies. Here, linear
instability analysis has delivered linearly unstable modes in very good agreement
with experiment. We found that the inconsistencies in previous theoretical results
can be attributed to insufficient resolution in two of the three past analyses, namely
those predicting the lowest and the highest critical Reynolds number values. Very
good agreement is obtained between the results of Ding & Kawahara (1998b) and
our calculations, as far as the mode quoted in the past as delivering the critical
conditions is concerned. However, in line with the predictions of Theofilis (2000)
and Albensoeder et al. (2001b), we find that this mode is the third in significance
from an instability analysis point of view. The frequency of this travelling mode T2
shows only qualitative agreement with that measured experimentally, the discrepancy
being of O(80%) in the range of Reynolds numbers monitored experimentally. In a
parameter range unexplored by earlier investigations we have found two new modes
which are more strongly amplified than the known mode T2. The first mode S1 is
stationary and becomes unstable at Recrit≈ 780; this mode may only be perceived
as a modification of the two-dimensional steady state. The critical Reynolds number
of the second mode T1, Re≈ 840, places it well inside the experimentally available
bracket; its frequency is within 1% of that identified experimentally. Several modes
amplified supercritically to T2 were also found to exist in the lid-driven cavity flow.

We have also considered the effect that a variable cavity aspect ratio has on the
instability of the flow, in the regime A ∈ [0.5, 4]. Outside this domain global instability
analysis is extremely challenging on account of either the high critical Reynolds
number values encountered at low aspect ratios or the large surface area to be resolved
at large aspect ratios; at both extremes the resolution requirements are inaccessible
by currently available hardware and algorithms. With this in mind, we have found
an increase in the aspect ratio of the lid-driven cavity to have a destabilizing effect
on all of the most unstable modes; the critical Reynolds number Recrit of the most
unstable global eigenmode at each aspect ratio varies from Recrit > 1.5×103 as A→ 0
to Recrit≈ 300 at the highest aspect ratio value examined, A= 4. An additional result
of interest from a flow-control point of view is that the frequency of the most-unstable
modes were found to be linear functions of and very weakly dependent on Reynolds
number past the tips of the respective neutral loops.

Finally, we have investigated the origin of the paradox of erroneous linear theory
predictions in the wall-bounded Couette flow class and very good agreement of linear
theory and experiment in the lid-driven cavity class of flows. Basic flows set up
by lid-motion at an angle φ ∈ (0, π/2), possessing all three velocity components,
were analysed with respect to their linear instability. All flows examined become
linearly unstable above Re =800. At small angles φ and analogous Re ranges all four
unstable travelling LDC modes were found to be present in the 2DC–LDC flow also.
By contrast, no evidence of the (most unstable) stationary mode S1 of LDC flow was
found in the 2DC–LDC flow. As φ increased a decrease of the amplification rates with
respect to the LDC and small-φ 2DC–LDC flows was observed at φ = π/4, followed
by recovery of the amplification rates when φ is increased further. This result leads to
the conjecture that basic flow motion on the (resolved) (x, y)-plane is necessary for
the appearance of linearly unstable modes in lid-driven cavity flows.
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In summary, the systematic numerical experimentation in the present paper has on
the one hand left unanswered the question of subcritical instability in the rectangular
duct and has added one more erroneous prediction of linear stability of wall-bounded
Couette flow. On the other hand, linear analysis has proved successful in predicting
instability in line with experimental findings in the classic lid-driven cavity and has
delivered unstable modes in the combined wall-bounded Couette and lid-driven cavity
flow.
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